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ABSTRACT 

Acoustic indices are mathematical summaries of sound waves. Several 

researchers have tried to find relationships between them and vocal animal communities 

to use them as a passive monitoring method, as human-derived surveys are expensive, 

time-consuming, and suffer from observer bias. However, supplanting manual surveys 

with acoustic indices is a daunting task, considering effective indices for biological 

monitoring would need to differentiate biologically relevant sounds from the broader 

soundscape, including from human-derived (anthrophony) and earth-derived (geophony) 

sound. We collected avian community data and calculated six commonly used acoustic 

indices from acoustic recordings in the largest remaining intact lowland tallgrass prairie 

in the Central Platte River Valley throughout the breeding seasons of 2019-2021. 

Singular acoustic indices had only weak correlations with avian abundance, richness, 

Simpson diversity, and grassland species abundance. Of all avian community metrics, 

avian species richness was best predicted by the acoustic diversity index (ADI) when a 

measure of anthrophony was included in the model. The acoustic complexity index and 

normalized difference sound index also showed promise for use in models for grassland 

species abundance. We did not find strong evidence for the use of these acoustic indices 

as a proxy for traditional avian point count surveys, which diverges from much past 

research related to different ecosystems (i.e., tropical and temperature forests). Intact 

North American grasslands are declining due to increased agricultural use and urban 

sprawl, which likely increases the anthrophony in the remaining grasslands. This along 

with naturally more intense geophony from strong winds in the Great Plains likely creates 
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a unique challenge for using acoustic indices to monitor populations of breeding 

grassland birds. However, model performance may be improved by including more 

refined measures of anthrophony, geophony, and habitat characteristics in future studies 

that examine utility of acoustic indices to track avian community trends in grassland 

ecosystems.



 

   
 

 vi 

 

TABLE OF CONTENTS 

I. INTRODUCTION .............................................................................................. 1 

II. METHODS ........................................................................................................ 9 

A. STUDY SITE ...................................................................................................... 9 

B. DATA COLLECTION ........................................................................................ 10 

C. ANALYSES ...................................................................................................... 12 

III. RESULTS ...................................................................................................... 16 

A. CORRELATIONS .............................................................................................. 16 

B. RICHNESS ....................................................................................................... 18 

C. ABUNDANCE ................................................................................................... 18 

D. SIMPSON DIVERSITY ...................................................................................... 19 

E. GRASSLAND SPECIES ABUNDANCE ................................................................. 19 

IV. DISCUSSION ................................................................................................ 20 

V. TABLES .......................................................................................................... 32 

VI. FIGURES ....................................................................................................... 46 

V. LITERATURE CITED .................................................................................. 55 

VII. APPENDIX .................................................................................................. 64 



 

   
 

 vii 

LIST OF TABLES 

Table 1. Summary statistics for variables included in models (n=93). Standard 

error of the mean (SE.mean), confidence level of the mean (CL.mean), variance (var), 

standard deviation (std.dev), acoustic complexity index (ACI), acoustic diversity index 

(ADI), acoustic evenness index (AEI), bioacoustics index (BIO), acoustic entropy index 

(H), normalized difference sound index (NDSI), northerly wind (0 or 1, NORTH), wind 

speed (kph, WIND), temperature (C°, TEMP), Julian date (JD), distance to interstate (m, 

DIST_INTERSTATE), and distance to transect (m, DIST_TRANSECT). ...................... 32 

Table 2. Pearson’s Product-Moment Correlations between outcome variables such 

as avian abundance within 50 m (ABUNDANCE_IN), total avian abundance 

(TOTAL_ABUNDANCE), avian richness within 50 m (RICHNESS_IN), total avian 

richness (RICHNESS_TOTAL), avian Simpson diversity index within 50 m 

(SIMP_DIV_IN), total avian Simpson diversity (SIMP_DIV_TOTAL), avian grassland 

species abundance within 50 m (GRASS_ABUN_IN), and total avian grassland species 

abundance (GRASS_ABUN_TOTAL) and acoustic indices such as acoustic complexity 

index (ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), bioacoustics 

index (BIO), acoustic entropy index (H), and normalized difference sound index (NDSI). 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ............................................ 33 

Table 3. Pearson correlations between acoustic indices such as acoustic 

complexity index (ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), 

bioacoustics index (BIO), acoustic entropy index (H), and normalized difference sound 

index (NDSI). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 .................... 34 



 

   
 

 viii 

Table 4. Pearson correlations between avian community outcome variables such 

as avian abundance within 50 m (ABUNDANCE_IN), total avian abundance 

(TOTAL_ABUNDANCE), avian richness within 50 m (RICHNESS_IN), total avian 

richness (RICHNESS_TOTAL), avian Simpson diversity index within 50 m 

(SIMP_DIV_IN), total avian Simpson diversity (SIMP_DIV_TOTAL), avian grassland 

species abundance within 50 m (GRASS_ABUN_IN), and total avian grassland species 

abundance (GRASS_ABUN_TOTAL) and environmental and temporal predictor 

variables such as Julian date (JD), northerly wind (0 or 1, NORTH), wind speed (kph, 

WIND), temperature (C°, TEMP), distance to interstate (m, DIST_INTERSTATE), and 

distance to transect (m, DIST_TRANSECT). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 

‘*’ 0.05 ‘.’ 0.1 .................................................................................................................... 35 

Table 5. Pearson correlations between environmental and temporal predictor 

variables such as Julian date (JD), northerly wind (0 or 1, NORTH), wind speed (kph, 

WIND), temperature (C°, TEMP), distance to interstate (m, DIST_INTERSTATE), and 

distance to transect (m, DIST_TRANSECT) and acoustic indices such as acoustic 

complexity index (ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), 

bioacoustics index (BIO), acoustic entropy index (H), and normalized difference sound 

index (NDSI). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 .................... 36 

Table 6. Each outcome variable and the average McFadden’s Psuedo-R2 for the 

confidence set of each outcome variable. Good fit to the data is expressed as Psuedo-R2 

between 0.2-0.4. *best between in and total model sets. ................................................... 37 



 

   
 

 ix 

Table 7. Models included in the confidence set for avian richness. All models 

controlled for distance to transect, observer bias, and Song meter model. Cumulative 

weight (Cum. Wt), Log-Likelihood (LL), acoustic diversity index (ADI), distance to 

interstate (m, DIST_INTERSTATE), and acoustic evenness index (AEI). ...................... 38 

Table 8. Full model average variables included in confidence set for avian 

richness within 50 m. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. 

Standard error (SE), acoustic diversity index (ADI), acoustic evenness index (AEI), 

distance to interstate (m, DIST_INTERSTATE). ............................................................. 39 

Table 9. Models included in the confidence set for avian abundance. All models 

controlled for distance to transect, observer bias, and Song meter model. Cumulative 

weight (Cum. Wt), Log-Likelihood (LL), acoustic evenness index (AEI), distance to 

interstate (m, DIST_INTERSTATE), acoustic complexity index (ACI), normalized 

difference sound index (NDSI), wind speed (kph, WIND), acoustic entropy index (H), 

time of survey (TIME), bioacoustics index (BIO), acoustic diversity index (ADI), Julian 

date (JD), and northerly wind (0 or 1, NORTH). .............................................................. 40 

Table 10. Full model average variables included in confidence set for avian 

abundance within 50 m. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. 

Standard error (SE), acoustic evenness index (AEI), acoustic complexity index (ACI), 

normalized difference sound index (NDSI), acoustic entropy index (H), bioacoustics 

index (BIO), acoustic diversity index (ADI), distance to interstate (m, 

DIST_INTERSTATE), wind speed (kph, WIND), time of survey (TIME), Julian date 

(JD), and northerly wind (0 or 1, NORTH). ...................................................................... 41 



 

   
 

 x 

Table 11. Models included in the confidence set for avian Simpson diversity. All 

models controlled for distance to transect, observer bias, and Song meter model. 

Cumulative weight (Cum. Wt), Log-Likelihood (LL), Julian date (JD), acoustic diversity 

index (ADI), distance to interstate (m, DIST_INTERSTATE), normalized difference 

sound index (NDSI), acoustic evenness index (AEI), time of survey (TIME), and 

northerly wind (0 or 1, NORTH). ...................................................................................... 42 

Table 12. Full model average variables included in confidence set for total avian 

Simpson diversity. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. Standard 

error (SE), acoustic diversity index (ADI), normalized difference sound index (NDSI), 

acoustic evenness index (AEI), distance to interstate (m, DIST_INTERSTATE), Julian 

date (JD), time of survey (TIME), and northerly wind (0 or 1, NORTH). ........................ 43 

Table 13. Models included in the confidence set for avian grassland species 

abundance. All models controlled for distance to transect, observer bias, and Song meter 

model. Cumulative weight (Cum. Wt), Log-Likelihood (LL), wind speed (kph, WIND), 

Julian date (JD), acoustic complexity index (ACI), distance to interstate (m, 

DIST_INTERSTATE), and normalized difference sound index (NDSI). ........................ 44 

Table 14. Full model average variables included in confidence set for avian 

grassland species abundance within 50 m. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 

‘*’ 0.05 ‘.’ 0.1. Standard error (SE), acoustic complexity index (ACI), normalized 

difference sound index (NDSI), distance to interstate (m, DIST_INTERSTATE), wind 

speed (kph, WIND), and Julian date (JD). ........................................................................ 45 



 

   
 

 xi 

LIST OF FIGURES 

Figure 1. Acoustic recorder locations (pink) and monitoring plots (yellow) on 

Shoemaker Island and Mormon Island of the Platte River near Grand Island, NE (A). 

Acoustic recorder location west of Crane Trust property near the north channel of the 

Platte River in Kearney, NE, at the Kearney Outdoor Learning Area (B). ....................... 46 

Figure 2. Model averaged acoustic indices relationship to richness for ADI (A) 

and AEI (B) included in model confidence set for avian richness with a limited survey 

radius. Grey area indicates 95% confidence intervals ....................................................... 47 

Figure 3. Model averaged acoustic indices relationship to abundance for ACI (A), 

ADI (B), H (C), AEI (D), BIO (E), and NDSI (F) included in model confidence set for 

avian abundance with a limited survey radius. Grey area indicates 95% confidence 

intervals. ............................................................................................................................ 48 

Figure 4. Model averaged acoustic indices relationship to abundance for ACI (A), 

AEI (B), and NDSI (C) when considering maximum (green), mean (red), and minimum 

(blue) distances (m) away from the interstate which was the closest major source of 

anthrophony to the study area. Acoustic indices shown were in model confidence set for 

avian abundance with a limited survey radius. .................................................................. 49 

Figure 5. Model averaged acoustic indices relationship to abundance for ACI (A), 

BIO (B), and NDSI (C) when considering maximum (green), mean (red), and minimum 

(blue) wind speeds during surveys. Acoustic indices shown were in model confidence set 

for avian abundance with a limited survey radius. ............................................................ 50 



 

   
 

 xii 

Figure 6. Model averaged acoustic indices relationship to Simpson diversity for 

ACI (A), AEI (B), and NDSI (C) included in model confidence set for avian Simpson 

diversity with an unlimited survey radius. Grey area indicates 95% confidence intervals.

 ........................................................................................................................................... 51 

Figure 7. Model averaged acoustic indices relationship to Simpson diversity for 

ADI (A) and NDSI (B) when considering maximum (green), mean (red), and minimum 

(blue) distances (m) away from the interstate which was the closest major source of 

anthrophony to the study area. Acoustic indices shown were in model confidence set for 

avian Simpson diversity with an unlimited survey radius. ................................................ 52 

Figure 8. Model averaged acoustic indices relationship to grassland species 

abundance for ACI (A) and NDSI (B) included in model confidence set for avian 

grassland species abundance with a limited survey radius. Grey area indicates 95% 

confidence intervals. .......................................................................................................... 53 

Figure 9. Model averaged acoustic indices relationships to grassland species 

abundance for ACI (A) and NDSI (B) when considering maximum (green), mean (red), 

and minimum (blue) distances (m) from the interstate, which was the closest major 

source of anthrophony to the study area. Acoustic indices shown were in model 

confidence set for avian grassland species abundance with a limited survey radius. ....... 54 



 

   
 

 1 

I. INTRODUCTION 

Sound influences nearly all of the animal kingdom. Almost every animal has the 

capability to send and receive auditory signals. Researchers have studied interspecific and 

intraspecific communication through bioacoustics (Fletcher 2007). However, there are 

more sounds surrounding us in the soundscape than just sounds produced by animals 

(biophony). Natural abiotic features and events such as rain, rivers, and wind produce 

sound (geophony), and sounds propagated by humans and human-made things 

(anthrophony) also fill the environment and affect animal communities (Pieretti and 

Farina 2013; Sueur et al. 2014; Villanueva-Rivera 2014). Soundscape ecology is a 

relatively new and growing discipline (Pijanowski et al. 2011b; Pijanowski et al. 2011a). 

Whereas other ecological studies of sound focus on communication within species or 

population levels, soundscape ecology distinguishes itself by focusing on community 

levels. Instead of focusing completely on biophony, soundscape ecology considers 

geophony, anthrophony, and how all three interact (Pijanowski et al. 2011a; Sueur et al. 

2014). This expanding field of study has the potential to engage patterns of ecosystem 

complexity in new ways with increased temporal resolution compared to traditional 

survey techniques (Villanueva-Rivera et al. 2011; Gasc et al. 2017). The soundscape of 

every environment is waiting to be understood, we just need to listen. 

Increasingly, researchers are listening and gathering data from soundscapes using 

autonomous recording units (ARUs) (Shonfield and Bayne 2017). ARUs provide a cost-

effective and non-invasive way to monitor acoustic communities (Alquezar and Machado 

2015; Hutto and Hutto 2020; Stewart et al. 2020). Recordings from ARUs have been used 
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in leu of in situ avian point-count surveys (Haselmayer and Quinn 2000; Hobson et al. 

2002; Hutto and Stutzman 2009; Klingbeil and Willig 2015). This allows ornithologists 

to listen to and replay audio recordings of surveys to determine species counts producing 

similar, if not better, results than traditional avian surveys, depending on habitat and 

recording schedule (Klingbeil and Willig 2015; Alquezar and Machado 2015; Stewart et 

al. 2020). However, this technique is time consuming with hours spent listening and 

manually identifying species from recordings. 

Automated recognition formulas (classifiers) also work in tandem with ARUs 

(Zhang et al. 2016; See. Yip et al. 2017, p. 27–67 figure 2). Classifiers recognize specific 

frequency and/or amplitude patterns that are frequently used to identify avian or anuran 

species within recordings (Jie Xie et al. 2015; Brauer et al. 2016; Zhang et al. 2016). 

Once created, a classifier greatly decreases time spent determining presence of a 

particular species. However, creating a classifier is technically demanding and can be 

applied only to one species. Commonly, a single species requires multiple classifiers 

because many species’ calls can vary regionally or change due to weather. These 

challenges limit the ability to quickly study higher levels of biodiversity. Given global 

environmental transformation (e.g., climate change, habitat loss, land use change, etc.), it 

is increasingly important to assess ecosystem function with rapid biodiversity 

assessments in high temporal and spatial resolution, to serve as an objective indicator of 

biodiversity change and provide early warning signs when ecosystems may be in trouble 

(Warren et al. 2013; Newbold et al. 2015).  



 

   
 

 3 

Compared to the previously mentioned methods and traditional surveys of 

acoustic communities, such as in-person avian point count surveys, Rapid acoustic 

surveys (RAS) (Sueur et al. 2008b) have the potential to survey multiple locations 

simultaneously and systematically without species identification by an expert. This may 

allow for a rapid biodiversity assessment method that is unbiased, cost effective, non-

invasive, and applicable to long-term monitoring. This relatively new RAS technique is 

conducted using ARUs and acoustic indices. Numerous acoustic indices have been 

developed to facilitate RAS (Buxton et al. 2018); however, acoustic indices only 

calculate different aspects of acoustic energy within an environment and not necessarily 

biologically translatable information (Gasc et al. 2013; Sueur et al. 2014; Eldridge et al. 

2018). For acoustic indices to be used as an effective monitoring tool, acoustic changes 

among and within biological communities must be ecologically meaningful, and those 

changes must be calculatable without being skewed by the remaining soundscape (Sueur 

et al. 2014; Eldridge et al. 2018). Consensus on how acoustic indices compare to 

biological community variation has not been reached, and those that have proven 

occasionally successful need further validation in a diverse set of ecological contexts 

(Gasc et al. 2015; Eldridge et al. 2016; Ferreira et al. 2018; Moreno-Gómez et al. 2019).  

The acoustic complexity index (ACI) (Pieretti et al. 2011) was created in response 

to other acoustic indices being too sensitive to background noise. ACI measures changes 

in frequency that in theory correspond to avian calling diversity while ignoring constant 

noises such as traffic or wind. ACI positively correlated in multiple studies with avian 

abundance (Pieretti et al. 2011; Izaguirre and Ramírez-Alán 2018; Jorge et al. 2018; 
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Eldridge et al. 2018; Brinley Buckley et al. 2018) and negatively correlated with diversity 

and richness (Pieretti and Farina 2013; Mammides et al. 2017; Izaguirre and Ramírez-

Alán 2018; Shamon et al. 2021). Even though ACI has had considerable success, Gasc et 

al. (2015) did not think ACI would be a good proxy for monitoring richness considering 

ACI was sensitive to background noise amplitude changes and chorus composition. 

Shamon et al. (2021) also encouraged careful interpretation of ACI suggesting ACI 

would positively correlate with high diversity of species with shorter more variant calls 

despite their findings of negative correlation to diversity in grassland habitats where 

avian calls were longer with more overlap.  

The bioacoustic index (BIO) (Boelman et al. 2007) was created to represent 

relative avian abundance by calculating the area under the mean spectrum (in dB) minus 

the minimum intensity of the curve between 2–8 kHz (Fuller et al. 2015, Izaguirre and 

Ramírez-Alán 2018, Bradfer-Lawrence et al. 2019). BIO was found to correlate with 

avian abundance (Boelman et al. 2007; Fuller et al. 2015; Izaguirre and Ramírez-Alán 

2018; Jorge et al. 2018) and was the best individual index to predict avian richness 

(Eldridge et al. 2018; Shamon et al. 2021). However, Mammides et al. (2017) found only 

a weak correlation between BIO and avian richness. When modeled with other indices to 

show temporal and spatial patterns, BIO was the least influential index included (Bradfer-

Lawrence et al. 2019), and BIO showed no patterns following any vocal taxa (Ferreira et 

al. 2018). Fairbrass et al. (2017) found BIO to be useful for determining biotic diversity 

and activity in urban areas, but it was influenced by human voices. 
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Acoustic entropy index (H), loosely based off of Shannon Entropy Index 

(Shannon and Weaver 1949) was created by Sueur et al. (2008b) to test alpha diversity of 

avian communities. Sueur et al. (2008b) had success testing H in a Tanzanian coastal 

forests. However, due to higher ratios of anthrophony to biophony success with H in 

temperate locations has been limited (Depraetere et al. 2012). This is in part due to high 

sensitivity to background noise which causes false high readings of H. 

Previously mentioned indices have been created with the intention of analyzing 

some aspect of biodiversity. Multiple indices also have been created to monitor habitat 

condition. The normalized difference sound index (NDSI) estimates habitat condition by 

calculating the ratio of anthrophony to biophony (Kasten et al. 2012). Fuller et al. (2015) 

found NDSI to strongly correlate with biocondition. They also found patterns between 

the index and bird richness, where higher richness produced more consistent values and 

lower richness more variable values for NDSI. NDSI was correlated with avian richness 

and diversity as well as anthrophony and was suggested as a measure of disturbance 

(Fairbrass et al. 2017). 

The acoustic diversity index (ADI) and the acoustic evenness index (AEI) 

(Villanueva-Rivera et al. 2011) are meant to help interpret the degree of degradation of a 

habitat by calculating the diversity and evenness of a soundscape. In a theory tested by 

Villanueva-Rivera et al. (2011), a generally unaltered habitat should have a more even 

soundscape with most frequency bins occupied, and an altered habitat will be more 

uneven sonically due to gaps in biophony. Villanueva-Rivera et al. (2011) documented 

this pattern where more agricultural landscapes had a lower ADI and higher AEI, and 
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more forested habitats had a lower AEI and higher ADI, indicating the indices correctly 

assessed the forested habitats to be more intact than the agricultural landscapes. Fuller et 

al. (2015) found AEI to negatively correlate with biocondition, which is expected, but did 

not find any patterns for ADI. ADI and AEI had nonlinear relationships, opposite of each 

other, for vegetation cover gradients (Shamon et al. 2021). ADI and AEI also have been 

tested as proxies of biodiversity with some success showing significant correlations with 

biodiversity estimates (Eldridge et al. 2018). ADI was shown to correlate strongly with 

anuran communities but weakly with avian communities, and the opposite was true for 

AEI (Ferreira et al. 2018). However, Jorge et al. (2018) found ADI to have a negative 

correlation with avian diversity. 

The inconsistencies between acoustic index study results could be due to acoustic 

indices not only considering the biotic community or taxa of interest, but also the whole 

soundscape. While this has possibly inhibited index performance (Ferreira et al. 2018; 

Moreno-Gómez et al. 2019), Eldridge et al. (2018) found that acoustic indices may 

provide a more comprehensive and nuanced evaluation of biodiversity than traditional 

survey methods. However, the success of acoustic evaluation of biodiversity may be 

limited by ecosystem type. Multiple studies testing acoustic indices have been done in 

temperate (Depraetere et al. 2012; Gasc et al. 2015; Farina et al. 2016; Eldridge et al. 

2018; Shamon et al. 2021) or tropical forests (Boelman et al. 2007; Towsey et al. 2014; 

Mammides et al. 2017; Ferreira et al. 2018; Izaguirre and Ramírez-Alán 2018; Eldridge 

et al. 2018), with varying degrees of success. It has been shown that acoustic indices 

currently reflect temperate habitat biodiversity more successfully than tropical habitats 
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(Eldridge et al. 2018). This is thought to be caused by the difference in number of 

vocalizing taxa between the two ecosystems. However, acoustic indices were able to 

decipher the location of recordings better than avian point-count surveys in tropical 

forests (Eldridge et al. 2018).  

While acoustic indices have been tested in various environments, most acoustic 

index studies have been conducted in forest habitats. It is known that avian species living 

in forests have different song characteristics than birds in grasslands (Boncoraglio and 

Saino 2007; Shamon et al. 2021), which could affect acoustic indices effectiveness in 

unknown ways. Very few studies have researched the effectiveness of acoustic indices in 

grasslands (Shamon et al. 2021). RAS may offer opportunities to assess grassland birds 

that are rapidly declining (Rosenberg et al. 2019). Adopting RAS as a monitoring 

technique could allow for wildlife and land managers to quickly be notified of changes in 

avian populations and respond accordingly before further population decreases occurred.  

However, grasslands are subject to direct and frequent winds linked to ecosystem 

maintenance that severely affect the soundscape and recordings used for data (Brinley 

Buckley et al. 2018; Hanberry 2021). Acoustic indices may respond differently in 

grasslands purely because of wind. While urban sprawl is widespread, grasslands also 

may be more affected by urbanization sonically due to anthrophony traveling farther 

because there are fewer natural barriers. So acoustic index results may be altered by 

sources of nearby anthrophony and need to be interpreted appropriately. 

Many studies testing this relatively new RAS technique have determined diversity 

of the environment by conducting “recorded avian surveys,” listening to recordings to 
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determine species count (Haselmayer and Quinn 2000; Hobson et al. 2002; Hutto and 

Stutzman 2009). This technique has been shown to be comparable to traditional in-person 

avian point count surveys. However, if RAS are adopted as an efficient monitoring 

method, they most likely would not be conducted in the same manner as traditional 

surveys (Klingbeil and Willig 2015). ARUs can easily be set to record multiple times a 

day instead of once every few days or weeks like many in-person monitoring plans. To 

test true potential of RAS through acoustic indices, ground truthing is needed to 

determine species richness, total abundance, and Simpson diversity (SDI; 1-D) (Simpson 

1949) of bird populations through traditional means in relation to new sampling methods 

utilizing ARUs. The Central Platte River Valley (CPRV) is an ideal location to gather 

grassland avian community data due to it being critical breeding grounds for a diversity 

of grassland birds throughout a range of riverine and grassland habitats (Brown and 

Johnsgard 2013). 

We raise the question of how well individual and combinations of acoustic 

indices, including ACI, AEI, ADI, BIO, H, NDSI, can predict species richness, total 

abundance, and SDI of bird populations in the Central Platte River Valley as measured 

via traditional monitoring methods like point count surveys?  

H0: Acoustic indices from sound recordings do not predict species richness, total 

abundance, and SDI of bird populations measured via traditional active monitoring such 

at point-count surveys. 

Ha: Acoustic indices from sound recordings can predict species richness, total 

abundance, and SDI of bird populations measured via traditional active monitoring such 
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at point-count surveys, and thus may be useful as a proxy for assessing avian abundance 

and community composition dynamics.  

II. METHODS  

A. Study Site  

Our research was conducted within the Central Platte River Valley (CPRV) in 

south-central Nebraska, USA. The Platte River is greatly modified from historical 

conditions. In the 1800s, the Platte River was described as “a mile wide and an inch 

deep”. The wide, yet shallow river and high water table promoted growth of wet 

meadows, tallgrass prairie, and riparian woodlands within the river valley (Chen 2007). 

However, dams and diversions, surface and ground water extraction for irrigation, and 

other human influences have dramatically decreased the river’s flows and floodplain 

connectivity, leading to woody encroachment, bank stabilization, and narrowing of 

channels (Williams 1978; Johnson 1994; Currier 1997; Farnsworth et al. 2018; Caven et 

al. 2019). Much of the land that was once wet meadow and native prairie has been 

converted to cropland (Dappen et al. 2008). Even though river channel area has decreased 

more than 46% and active channel width more than 59% on average since 1938 (Horn et 

al. 2012; Appendix 2, Caven et al. 2019), the Platte River still has occasional high flows 

and a high water table with variations of elevation creating a mosaic of ecotopes ranging 

in moisture levels, plant communities, and soil types (Henszey et al. 2004; Chen 2007; 

Brinley Buckley et al. 2021). With wet meadows, tallgrass prairies, ephemeral and 

perennial sloughs, shrublands, riparian woodlands, sandy ridges, and river sandbars all 

within a relatively short distance, the CPRV is a globally recognized Important Bird Area 
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providing stopover habitat for a diversity of migrating and breeding birds (Lingle and 

Hay 1982; Sharpe et al. 2001; Brown and Johnsgard 2013; Poague 2016).  

Most of our sampling sites were located on land owned by the Crane Trust 

(40.7887873, -98.4681745; 585 m.a.s.l.), a nonprofit conservation organization near 

Grand Island, NE, focused on managing land within the CPRV for migrating and 

breeding birds, including the endangered Whooping Crane, with adaptive management 

techniques such as prescribed burning and rotational grazing of cattle and bison to mimic 

natural historical disturbance regimes (Fuhlendorf et al. 2009). Within Crane Trust 

property, our sites were centered on Mormon (40.7959911, -98.4149933; 578 m.a.s.l.) 

and Shoemaker (40.7887872, -98.4681745; 585 m.a.s.l.) islands (Figure 1a). One 

additional site was west of Crane Trust land, located a restored wetland at the Kearney 

Outdoor Learning Area (40.67754, -99.12228; 658 m.a.s.l.) (Figure 1b).  

B. Data Collection  

We collected audio and avian data during springs and summers of 2019, 2020, 

and 2021. We used autonomous recorders with two microphones (Song Meter SM2+ and 

SM4; Wildlife Acoustics, Maynard, Massachusetts, USA) to capture 5-minute recordings 

of avian populations every hour. The sampling rate was 44.1 kHz and the bit depth was 

16 bits. We set the audio recorders at specific locations based on terrestrial monitoring 

plots from the Crane Trust’s long-term research and monitoring plan used to monitor 

vegetation, bird diversity and relative abundance, anuran populations, small mammal 

populations, and butterfly species of concern throughout the CPRV at varying ecotopes 

(soil and plant communities) (Caven et al. 2017). Recorders were serviced approximately 
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monthly to exchange SD cards, replace batteries, and ensure they were working properly. 

SD cards were downloaded to a file organized by individual recorder and date. 

Avian point-count surveys were conducted at each monitoring plot within 400 m 

of an audio recorder at least twice within the breeding seasons (21 May to 15 July) 30 

minutes before sunrise to 3 hours after sunrise (Sorace et al. 2000; Gregory et al. 2004). 

Two surveyors completed the 15-minute surveys with one as an observer and one as a 

recorder. During the survey time, the observer identified each bird seen or heard in the 

area and indicated it as within a 50-m radius of the observer (herein referred to as “in”) or 

not. The recorder also assisted with bird detection and identification as necessary. 

Temperature, wind speed, and wind direction were recorded at the beginning or end of 

the survey with a Kestrel 3500 Weather Meter. Surveys were not conducted if the 

temperature was below -2.2° C (28° F), wind was over 24.1 kph (15 mph), there was 

fully overcast skies, moderate or heavy rain occurring, or visibility reduced by fog 

(Sorace et al. 2000; Gregory et al. 2004).  

Recordings used for avian analysis included three, 5-min recordings from the 

same day that the manual surveys were conducted to have equal time allotments for both 

methods (15 minutes). The three, 5-min recordings used were within the time parameters 

allowed for manual avian surveys (i.e., within 3 hrs. of sunrise). This method was a 

compromise between the two sampling methods that Klingbeil and Willig (2015) used 

that resulted in suggesting to record more frequently over a longer amount of time to 

alleviate the loss of visual detection of birds.  
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C. Analyses  

We used R (version 4.1.1) and R-Studio (version 1.4.1717; R Core Team 2021) 

for analyses. We calculated six acoustic indices from the R packages ‘seewave’ (version 

2.1.8; Sueur et al. 2008a) and ‘soundecology’ (version 1.3.3; Villanueva-Rivera et al. 

2011). Acoustic Complexity Index (ACI) (Pieretti et al. 2011) calculates the variability of 

the soundscape by accounting for the complexity of vocal biotic communities despite 

constant sounds produced by humans, known as anthrophony. This relies on the idea that 

biotic sounds are generally characterized by variation of intensity, whereas anthrophony 

is generally consistent in intensity. This is done by considering the amplitude of one-time 

sample’s frequency band versus the amplitude of the next time sample’s frequency band 

and the relative amplitude of the entire band. Acoustic Diversity Index (ADI) 

(Villanueva-Rivera et al. 2011) is able to calculate the evenness of a soundscape or if 

there is equal intensity throughout all or most frequency bands. In theory, acoustically 

rich habitats would produce higher values because all or most frequency bands are 

constantly occupied. ADI essentially calculates the Shannon diversity index for a sound 

file. Acoustic Evenness Index (AEI) (Villanueva-Rivera et al. 2011) calculates the 

unevenness of a soundscape or if there is a greater intensity within a specific range of 

frequency. It will produce higher results if there is greater unevenness between 

frequencies, like the Gini coefficient (opposite of ADI). In theory acoustically rich 

habitats would produce values closer to 0 since all or most frequency bands are 

constantly being occupied. Bioacoustic Index (BIO) (Boelman et al. 2007) was created to 

track large changes in avian communities among habitats (not accounting for changes in 
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probability of detection) or through time. It is calculated by looking at the average 

amplitude within a specific range of frequency bands minus the band with the lowest 

amplitude. Acoustic Entropy Index (H) (Sueur et al. 2008b) was created using temporal 

entropy (Ht) and the spectral entropy (Hf) with the goal of measuring alpha diversity. H 

is calculated based on Shannon entropy of probability mass function where Ht is derived 

from the amplitude envelope and Hf from the mean spectrum. Normalized Difference 

Sound Index (NDSI) (Kasten et al. 2012) is considered to calculate the ‘health’ of the 

habitat, looking at the ratio of anthrophony to biophony or (biophony − 

anthrophony)/(biophony + anthrophony) where anthrophony is anything within 1–2kHz 

and biophony is 2-11kHz. NDSI has potential to show the long-term relationship between 

biophony and anthrophony, but not diversity within a habitat. ACI, ADI, AEI, BIO, H, 

and NDSI are commonly used in other studies and were chosen in order to have a 

stronger comparison to other research (Bradfer-Lawrence et al. 2020).  

Our outcome variables were calculated from the avian point count surveys and 

consisted of avian richness (number of bird species); absolute avian abundance (number 

of individual birds); Simpson diversity (SDI; accounts for number of species present and 

relative abundance of each species; Simpson 1949), which was calculated using the 

default in the package ‘vegan’ (version 2.5-7; Oksanen et al. 2020); and grassland species 

abundance, which consisted of a count of obligate grassland bird species (Upland 

Sandpiper, Grasshopper Sparrow, Dickcissel, Bobolink, Red-winged Blackbird, Western 

Meadowlark, and Brown-headed Cowbird; Kim et al. 2008). Our avian survey method 

allowed us to calculate two variations of each outcome variable, one consisting of survey 
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results with a limited radius of 50 m (“in”) and one consisting of survey results with an 

unlimited radius (“total”). This was done to test if acoustic indices would work better at a 

local scale or more expansive scale due to limited natural sound barriers in the 

grasslands. Akaike's Information Criterion corrected for small sample sizes (AICc) 

(Wagenmakers and Farrell 2004; Burnham et al. 2011) was used to compare models, and 

McFadden’s Psuedo-R2 (McFadden 1974) was used to asses goodness of fit of best 

models. 

In addition to survey results and acoustic indices, we documented environmental 

and temporal variables including: wind speed at time of survey (WIND); whether wind 

was from the north (NORTH; yes/no), because wind could carry noise from the interstate 

that was north of most audio recorders and the greatest source of nearby anthrophony; 

shortest distance from interstate to the audio recorder (DIST_INTERSTATE), Julian date 

(JD), temperature at time of survey (TEMP), and time of survey (TIME). We also 

considered interactions between DIST_INTERSTATE and acoustic indices and WIND 

and acoustic indices because anthrophony and geophony generally affect acoustic indices 

(Towsey et al. 2014; Fuller et al. 2015; Buxton et al. 2018). We controlled for observer 

bias during bird surveys, audio recorder model, and distance from audio recorder to avian 

point count location (monitoring plot) in each model tested. We used ACI, ADI, AEI, 

BIO, H, NDSI, WIND, NORTH, DIST_INTERSTATE, JD, TEMP, and TIME as 

predictor variables in generalized linear models (GLMs) (Nelder and Baker 1972) to 

determine which variables were most influential in predicting the outcome variables: 

richness in and total, abundance in and total, SDI in and total, grassland bird abundance 
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in and total within our ecosystem. Global models were fit and assessed to ensure they fit 

the assumptions of GLMs. Variables with a moderate or high Pearson’s correlation (r 

>0.6; Chan 2003) were not included in the same global model. 

To compare relationships between acoustic indices and avian community metrics, 

we determined models of best fit using Akaike's Information Criterion corrected for small 

sample sizes (AICc) (Wagenmakers and Farrell 2004; Burnham et al. 2011). Our model 

set included three subglobal models, models derived from backwards selection of the 

three subglobal models, models derived from the literature as to which acoustic indices 

were suggested to work the best, and thematic models to test if anthrophony and 

geophony influence acoustic index readings directly. Pearson’s correlations were also run 

for acoustic indices and avian outcome variables to determine if any linear relationships 

were present in the data. We used Chan (2003) to define correlation thresholds (strong, r 

> 0.8; moderate, r > 0.6; fair, r > 0.3; and poor, r < 0.3). 

The confidence set for each outcome variable was determined by including the 

top weighted models until the AICc cumulative weight was at least 0.95. Because model 

uncertainty is common, model averaging of the confidence set was done to determine 

variable significance (Rehme et al. 2011). Model averaged variables and interaction 

terms were then plotted against the outcome variable with 95% confidence intervals to 

further determine relationships between acoustic indices and avian community metrics. 

McFadden’s Psuedo-R2 (McFadden 1974) was calculated for each model in the 

confidence set and then averaged to determine which method of surveys was a better fit 

for acoustic indices. 
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III. RESULTS 

We completed and paired 18, 31, and 44 surveys with audio recordings in the 

breeding seasons of 2019, 2020, and 2021 respectively for a total of 93 avian point-count 

surveys at 21 sites. Over these 3 seasons, we surveyed a total of 73 different bird species. 

The most abundant species were Red-winged Blackbird (Agelaius phoeniceus), Brown-

headed Cowbird (Molothrus ater), Dickcissel (Spiza americana), Bobolink (Dolichonyx 

oryzivorus), and Western Meadowlark (Sturnella neglecta) (Appendix A). We had up to 

22 different bird species and 155 individuals in one point count survey (Table 1). We 

analyzed 279 5-min audio recordings to produce the 6 acoustic indices for each survey 

completed. ACI ranged from 8,986 to 13,077 with an average of 9,805 (Table 1). ADI 

ranged from 0.262 to 2.251 with an average of 1.581. AEI ranged from 0.162 to 0.877 

with an average of 0.539. BIO ranged from 3.08 to 13.41 with an average of 7.30. H 

ranged from 0.279 to 0.983 with an average 0.703. NDSI ranged from -0.539 to 0.983 

with an average of 0.730 (Table 1). 

A. Correlations 

None of the avian community metrics were strongly or moderately correlated with 

any of the acoustic indices (Table 2; per Chan 2003). The highest correlation was 

between ADI and abundance with an unlimited sampling radius; the correlation was 

highly significant but only of fair strength (0.325; Table 2). All remaining significant 

correlations were only of poor strength (Table 2). Abundance, both within 50 m and with 

an unlimited sampling radius, was correlated positively with ADI and H, and negatively 
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with AEI. Richness with an unlimited sampling radius had a negative correlation with 

ACI. SDI, both within 50 m and with an unlimited sampling radius, was not significantly 

correlated with any acoustic indices. Grassland species abundance within 50 m was 

positively correlated with ACI, ADI, BIO, as well as negatively with AEI. Grassland 

species abundance with an unlimited sampling radius was positively correlated with ACI.  

There were many significant and relatively strong correlations between the 

acoustic indices (Table 3). AEI was highly and moderately negatively correlated with 

ADI and H, respectively, while ADI and H were moderately positively correlated. Fair 

positive associations occurred between ACI and ADI, ADI and NDSI, and BIO and 

NDSI. Fair negative associations occurred between AEI and ACI, as well as NDSI and 

AEI (Table 3). 

Some avian community variables and temporal predictor variables were 

correlated (Table 4). Abundance within 50 m had a poor negative correlation with wind 

speed. Richness with an unlimited sampling radius and grassland species abundance 

within 50 m had poor positive and negative correlation to date, respectively. Richness 

with an unlimited sampling radius was also poorly negatively associated with a northerly 

wind component and positively correlated to temperature. Distance to the interstate was 

significantly correlated with richness and SDI, and negatively correlated with grassland 

species abundance, both within 50 m and with an unlimited sampling radius for each 

(Table 4).  

There were few correlations between acoustic indices and temporal predictor 

variables (Table 5). ACI had highly significant fair negative correlations with date and 
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distance to interstate (Table 5). ADI and AEI were fairly negatively and positively 

correlated to wind speed, respectively. BIO had poor negative correlations to date and 

temperature. H had a poor positive correlation to a northerly wind component and NDSI 

had a poor positive correlation to temperature (Table 5) 

B. Richness 

Avian richness within 50 m was a better fit to the acoustic index data than avian 

richness with an unlimited sampling radius due to a higher average pseudo R2 value 

(Table 6). The top model for avian richness was ADI and distance to interstate (Table 7). 

Considering ADI and AEI were highly correlated, it was not surprising that the second 

model with a weight of 0.33 was AEI and distance to interstate. However, the model 

averaging results showed that ADI and AEI did not have significant predictive power in 

the top models (Figure 2), whereas distance to interstate was very significant in the top 

models (Table 8). Despite model averaging showing otherwise, ADI and AEI must have 

explained some slight variation in the data because distance to interstate alone was only 

the third best model (Table 7). Considering all of this, our richness models did not 

explain much variation in the data shown by the lower pseudo R2. However, our richness 

models did have the highest pseudo R2 out of all the avian community metrics (Table 6). 

C. Abundance  

Avian abundance within 50 m had the better psuedo-R2 compared with abundance 

with an unlimited sampling radius (Table 6). Our abundance models ranked 3rd in 

psuedo-R2 out of the four avian community metrics and had low goodness of fit to the 

data. The model with the best AICc for avian abundance consisted of AEI and ACI with 
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the interactions with distance to interstate and NDSI and its interaction with wind speed 

(Table 9). The model with the highest pseudo-R2 consisted of BIO and ACI and their 

interaction with wind speed, H, time of survey, and NDSI with its interaction with wind 

speed and distance to interstate (Table 9). H by itself had the 3rd best AICc but it 

presented the worst psuedo-R2 within the confidence set (Table 9). The remaining two 

models in the confidence set for abundance had a combined AICc weight of 0.05. Model 

averaging showed limited significance with any one variable or interaction term (Table 

10, Figures 3, 4, and 5).  

D. Simpson Diversity 

Avian SDI with an unlimited sampling radius models were better fit to our 

acoustic index data than SDI within 50 m (Table 6). SDI was the only metric that our 

total counts performed better than our counts within 50 m. However, the pseudo-R2 was 

negative for both indicating our models did not fit the data. Our SDI models had the 

lowest psuedo-R2 out of all avian community metrics (Table 6). Our best models for SDI 

consisted of ADI, NDSI, and their interaction with distance to interstate along with date 

(Table 11). Both models in the confidence set were similar in model weight attributing to 

high model uncertainty. Based on model averaging date, NDSI, and NDSI: 

DIST_INTERSTATE were significant (Table 12, Figures 6 and 7).  

E. Grassland Species Abundance 

Grassland species abundance within 50 m fit our data better than grassland 

species abundance with an unlimited sampling radius (Table 6). Grassland species 

abundance was the second best fit to our data for avian community metrics (Table 6). The 
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confidence set for grassland species abundance only consisted of one model with a high 

model weight (Table 13). Considering model uncertainty was low, model averaging was 

not needed, and ACI, NDSI, date, distance to interstate, ACI:DIST_INTERSTATE, and 

NDSI:DIST_INTERSTATE were all significant (Table 14). However, Figure 8 shows 

that NDSI and ACI by themselves have minimal power to predict grassland species 

abundance, but when the interaction with distance to interstate is considered, a 

relationship between the acoustic indices and grassland species abundance becomes more 

evident (Figure 9). ACI has a negative relationship with grassland species abundance 

when closer to the interstate, but that relationship inverts as the interstate becomes further 

away (Figure 9a). NDSI seemed to only have a significant positive relationship with 

grassland species abundance when closest to the interstate (Figure 9b). At maximum and 

average values, the relationship was not significant (Figure 9b).  

IV. DISCUSSION  

We tested how well six commonly used acoustic indices can be used for avian 

monitoring within a temperate grassland. Many studies have considered the efficacy of 

acoustic indices as a proxy for biodiversity monitoring (Farina et al. 2016; Ferreira et al. 

2018; Jorge et al. 2018; Buxton et al. 2018; Eldridge et al. 2018; Zhao et al. 2019; 

Bradfer-Lawrence et al. 2020; Shamon et al. 2021), but only a few indices have been 

tested with ground-based avian data from in-person surveys (Jorge et al. 2018; Müller et 

al. 2020; Bradfer-Lawrence et al. 2020; Dröge et al. 2021), and fewer still have 

considered grasslands as the test setting (Shamon et al. 2021). Our study provided 

insights about how well acoustic indices may relate to in-person avian call surveys 
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conducted in a grassland system in the Great Plains of North America. Our results 

indicated relatively low success using singular acoustic indices to identify variation in the 

bird community across sites in grasslands of the CPRV when looking at correlations 

between acoustic indices and avian community metrics alone. While we did find 

significant correlations between acoustic indices and in-person avian survey, they were 

only slight or weak (r <0.45, Table 2), which indicates that single acoustic indices were 

not suitable for use for avian monitoring in our grassland study area as a proxy for 

manual point-count surveys. Because we found significant but weak correlations, there is 

potential singular acoustic indices could follow long-term trends in avian data if a 

baseline relationship between the acoustic index, habitat, and avian community is 

understood prior to monitoring. For example, we found ADI to have a significant 

correlation to avian abundance sampled with an unlimited radius in our study system, but 

ADI only follows about 30% of the changes in avian abundance (Table 2). This 

relationship would not efficiently show minute changes in avian abundance, but it could 

suggest dramatic or large-scale changes in the avian community. This relationship may 

be different in other study systems, which is emphasized by the extreme variation in 

performance and results of acoustic indices between and within other studies (Mammides 

et al. 2017; Ferreira et al. 2018; Eldridge et al. 2018; Bradfer-Lawrence et al. 2020; 

Mammides et al. 2021).  

We found ACI to have a poor negative relationship with total avian richness and a 

poor positive relationship with both grassland species abundance variables (Table 2). 

Others have found significant positive relationships with richness and ACI (Eldridge et 
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al. 2018; Bradfer-Lawrence et al. 2020). However, many also have found a negative or 

extremely weak or nonexistent relationship between avian richness and ACI (Ferreira et 

al. 2018; Moreno-Gómez et al. 2019; Zhao et al. 2019; Dröge et al. 2021; Shamon et al. 

2021), including Eldridge et al. (2018) in tropical forests. A negative relationship with 

ACI indicates that the soundscape has more even intensity at lower richness, and there is 

a more inconsistent intensity in the soundscape at higher richness. This is the opposite of 

basic theories of RAS connecting avian diversity, habitat health, and the soundscape 

(Sueur et al. 2008b; Villanueva-Rivera et al. 2011). This would mean ACI may not be a 

measure of biodiversity but instead may just act as relative measure of avian activity after 

establishing a baseline within a specific location. This is considering that Ferreira et al. 

(2018) found ACI’s relationship to vary between locations (negative at one location and 

positive at another), and ACI did not have a significant relationship with any vocal 

animal group unless results were separated by site (Ferreira et al. 2018). This could be 

why we did not find strong or consistent results for ACI as we did not distinguish 

between sites.  

ACI was designed to have a positive relationship with avian singing intensity 

(Pieretti et al. 2011). Researchers have found ACI correlated with a number of 

vocalizations (Farina et al. 2011; Depraetere et al. 2012; Fuller et al. 2015), which 

follows the intended purpose of relating to singing intensity. An interesting case found 

ACI to negatively correlate to diversity and richness but positively to abundance 

(Izaguirre and Ramírez-Alán 2018). We found grassland species abundance to have a 

significant weak positive correlation, which could indicate that ACI was a better measure 
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of abundance than richness considering grassland ecosystems and/or associated birds. 

Also, despite our low correlations with avian richness, ACI was only influential in 

models associated with avian abundance and grassland species abundance. Since 

increased richness does not necessarily indicate an increase in song intensity or number 

of vocalizations, it tracks that ACI has had relatively limited success in accounting for 

avian richness (Ferreira et al. 2018; Zhao et al. 2019; Dröge et al. 2021) and was not 

included in any of our top models for diversity or richness in our study area. Bradfer-

Lawrence et al. (2020) found ACI to not perform better with avian richness compared to 

avian abundance. This further indicates that considering the design of ACI when deciding 

where to apply ACI is critical to the success of the index. 

ADI and AEI had the most success with our avian abundance variables but still 

only showed poor or fair relationships (Table 2). Despite the correlations with abundance, 

they were the only acoustic indices to be included in the avian richness confidence set, 

indicating that ADI and AEI have the most promise to relate to richness, especially in 

grasslands. However, there are inconsistent relationships between ADI, AEI, and avian 

communities throughout literature even within North American grasslands (Shamon et al. 

2021). A more consistently filled frequency spectrum (higher ADI values, lower AEI 

values) has been shown to relate to habitats with both lower (Eldridge et al. 2018; 

Moreno-Gómez et al. 2019; Bradfer-Lawrence et al. 2020) and higher levels of avian 

diversity (Sueur et al. 2008b; Mammides et al. 2017; Zhao et al. 2019; Mammides et al. 

2021). This may indicate a limited utility for both ADI and AEI. However, this in fact 

emphasizes the need to carefully interpret the results of ADI and AEI in the context of a 
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unique habitat. Mammides et al. (2021) explains how AEI (and conversely ADI) can 

realistically produce a negative or positive relationship with biodiversity depending on 

the frequency range of the birds singing and the level of background noise or 

anthrophony in the soundscape.  

We found relationships opposite that of Bradfer-Lawrence et al. (2020) for ADI 

and AEI. Considering Mammides et al. (2021), this could mean our habitat is more 

consistently filled with lower frequency anthrophony and is affecting the results of ADI 

and AEI differently than in a habitat with a pristine soundscape. Considering this, it 

makes sense why our top models for avian richness (also best models overall) only 

included ADI or AEI and distance to major source of anthrophony (interstate to the 

north). This is yet another example of how acoustic indices can be used only if the effects 

of the surrounding environment on acoustic indices are understood before interpreting the 

results. 

We only found a poor positive relationship for BIO with grassland species 

abundance within 50 m. Shamon et al. (2021) found BIO (referred to as BI) to have a 

weak significant correlation to avian richness in grasslands. However, others have found 

negative relationships between BIO and avian richness (Zhao et al. 2019) and diversity 

(Izaguirre and Ramírez-Alán 2018). However, we found BIO to be influential only in 

avian abundance top models and not in richness or diversity models. Ferreira et al. (2018) 

more broadly concluded that BIO was not correlated to any biophony-type richness, 

especially avian, and accounted for biophonic abundance rather than richness. This 

follows with BIO’s intended purpose and original success of being a measure of avian 
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abundance by considering intensity and diversity of frequency in a recording (Boelman et 

al. 2007). Again, despite the considerable attempts to use BIO as a measure of avian 

richness (Mammides et al. 2017; Eldridge et al. 2018; Zhao et al. 2019; Bradfer-

Lawrence et al. 2020; Shamon et al. 2021), our results suggest that BIO, like ACI, is 

better suited to follow patterns of avian abundance in grasslands in the Central Platte 

River Valley. These findings are counter to Bradfer-Lawrence et al. (2020) who found 

BIO to better fit with richness data than abundance models. 

We did not find any correlation between H and richness, which instead 

demonstrated a significant, but poor, correlation with avian abundance (Table 2). H had 

the strongest correlation with avian richness in a controlled simulated experiment (Zhao 

et al. 2019) and was significantly correlated to richness in a subtropical region (Fuller et 

al. 2015). Yet H was found to weakly negatively correlate with avian richness but was a 

better positive fit for anurans and insects (Ferreira et al. 2018) or even have no correlation 

to avian richness (Jorge et al. 2018). H has been reported to be strongly affected by 

background noise (Depraetere et al. 2012; Gasc et al. 2015). Considering our soundscape 

had a nearby source of anthrophony from the interstate, H many not have performed as 

efficiently as in other studies (Sueur et al. 2008b; Zhao et al. 2019). 

NDSI was an interesting case, as we did not detect significant relationships 

between any avian community metrics and NDSI based on correlations, but NDSI was 

the most common acoustic index within our top models except for richness models. NDSI 

was created and found to calculate level of sonic disturbance and categorizes types of 

sounds into distinct frequency bins (anthrophony; 0.2-2kHz, biophony; 2-8kHz) (Kasten 
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et al. 2012; Fairbrass et al. 2017). When NDSI was included our top models, it was 

typically interacting with the variable related to a major source of anthrophony and/or 

wind speed. Figures 5c, 7b, and 9b show that the relationship between NDSI and the 

avian community changes based on the level of anthrophony and/or geophony and may 

explain why there were no correlations with avian community metrics. NDSI also 

increased significantly as did distance to highway (Ghadiri Khanaposhtani et al. 2019). 

However, Ghadiri Khanaposhtani et al. (2019) did not attribute this entirely to changes in 

anthrophony as other acoustic indices and avian survey results indicated changes in 

biophony as well which would affect NDSI results. NDSI was also found to follow 

patterns of biocondition (which considered proximity to road) where a lower biocondition 

resulted in a more variable NDSI result (Fuller et al. 2015). This indicates that if NDSI is 

used for acoustic monitoring in grasslands, measures of anthrophony and/or geophony 

should also be considered, otherwise NDSI may not produce interpretable results directly 

related to avian community changes. 

Studies have found that some indices work differently with higher levels of 

anthrophony (Buxton et al. 2018). Anthrophony seems to elevate most acoustic index 

readings (Fuller et al. 2015). However, the exact expected effects of anthrophony on 

acoustic indices is difficult to define because birds may sing louder in habitats with 

consistent anthrophony, which should also increase acoustic indices such as ACI (Pieretti 

and Farina 2013) or bird communities, especially in herbaceous wetlands, may change 

due to nearby sources of anthrophony (Ghadiri Khanaposhtani et al. 2019). ACI was 

shown to have a negative relationship with distance to anthrophony despite changes in 
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avian richness (Pieretti and Farina 2013). Conversely, ACI had a negative relationship to 

anthrophony intensity (Gasc et al. 2015). NDSI had a positive relationship with distance 

to anthrophony (Ghadiri Khanaposhtani et al. 2019). However, being able to distinguish 

between changes in acoustic index results caused by an increase in singing intensity or an 

increase in anthrophony intensity is difficult to determine, especially for indices that 

calculate sound intensity rather than frequency. This difficultly is amplified by our 

conflicting results. Our grassland species abundance models showed the strongest 

interactions with acoustic indices and anthrophony (Figure 9), where at the average 

distance from the interstate NDSI and ACI had positive or nearly positive relationships 

with grassland bird abundance (Table 14). Closer to the source of anthrophony the 

relationship between grassland bird abundance and NDSI became more positive, and 

ACI’s relationship became increasingly negative. The opposite was true when 

anthrophony was farther away; the relationship with NDSI was negative and the 

relationship with ACI was positive (Figure 9).  

Geophony has been found to cause acoustic indices to perform poorly (Towsey et 

al. 2014). Wind was included in multiple top models in our abundance and grassland 

species abundance confidence sets (Tables 10 and 14). This indicates that wind is an 

important consideration when assessing biophony in soundscapes and should generally be 

included as a control variable in models intending to assess biological communities with 

acoustic indices, especially in open and windy environments. This may be particularly 

important in the Great Plains and other grassland provinces (Hanberry 2021).  
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We found that our acoustic index models best predicted avian richness when 

monitoring avian populations in grasslands. While this has not been strictly determined in 

past research, as only a few studies have compared measures of avian biodiversity other 

than richness (Boelman et al. 2007; Pieretti et al. 2011; Izaguirre and Ramírez-Alán 

2018), many have already compared avian richness to acoustic indices (Gasc et al. 2015; 

Fuller et al. 2015; Mammides et al. 2017; Jorge et al. 2018; Eldridge et al. 2018; Shamon 

et al. 2021). However, our model for grassland species abundance exhibited more 

promise than expected as it was the second-best model set after richness (Table 6). The 

top five most abundant birds were all grassland species (Appendix A). Grassland species 

are thought to sing with higher frequencies as they travel farther than lower frequencies 

and there are not as many natural barriers to block high frequency sounds (Cosens and 

Falls 1984). The more frequent and higher frequency songs considered in the grassland 

species abundance metric may explain why ACI and NDSI were the acoustic indices used 

in the model. The higher frequency songs of grassland birds would be less likely to 

intermix with the lower frequencies of the anthrophony creating a cleaner ratio of 

biophony to anthrophony for NDSI to calculate. Because grassland birds were the most 

abundant, ACI was most likely able to detect intensity changes alongside grassland 

species abundance changes. Shamon et al. (2021) also had success with ACI and 

grassland species and did not find a strong relationship with ADI and AEI. 

All our acoustic index models in the final confidence sets performed better when 

the outcome variable related to survey results with a limited radius, excluding avian 

Simpson diversity that performed poorly. While richness was best fit to our data and 
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grassland species abundance not far behind (Table 6), we did not reach a level of Psuedo-

R2 high enough to suggest that acoustic indices are a good proxy for in person avian 

point-count surveys yet. However, with a greater understanding of the surrounding 

habitat and how it affects acoustic index models, acoustic indices may be able to report 

avian diversity trends for long-term monitoring and research. However, this will likely 

require a model-based framework with multiple indices as predictor variables. 

Additionally, the most appropriate indices for monitoring may need to be regionally 

specific to reflect the local biota as well as geophony and anthrophony. Finally, it may be 

necessary to increase the number of control variables including habitat features that may 

influence sound transmission. 

Limitations 

While our study area was mostly grasslands, there were survey and recording 

locations in differing habitats, such as riparian woodlands and shrublands. We did not 

include habitat variables in our models because we expected a change in habitat to also 

change the bird community. If acoustic indices were effective in their purest form, they 

should reflect variations in bird activity, diversity, and richness regardless of community 

composition. We thought this to be especially true because these differing habitats were 

not large enough to create an auditory barrier from the more grassland-type species and 

could be heard amongst the woodland and shrubland species. However, many have found 

habitat characteristics to relate to acoustic index patterns (Do Nascimento et al. 2020; 

Mitchell et al. 2020; Retamosa Izaguirre et al. 2021). Considering our weaker than 

expected results and how acoustic indices seem to work differently among habitats (Do 
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Nascimento et al. 2020; Mitchell et al. 2020; Retamosa Izaguirre et al. 2021), including 

habitat variables in models may have improved their predictive power. Another 

potentially useful approach could include treating site as a “random effect” within a 

Generalized Linear Mixed Models framework (Dean and Nielsen 2007). However, an 

increase in predictor variables or model complexity would have required a larger sample 

size at each survey/recording location. Because we did not include any measures of 

biocondition or habitat quality in our models, the influence of distance to interstate may 

have been inflated. Habitat conditions may have improved or changed further from the 

source of anthrophony due to reasons not associated with the interstate (e.g., a housing 

development existed directly across the river from the eastern portion of Mormon Island). 

Conclusions 

Overall, we did not find strong evidence that acoustic indices should be used as a 

proxy to typical avian point-count surveys in tallgrass prairies in the CPRV; this may be 

particularly problematic in systems with significant anthrophony. However, because we 

found slight or weak patterns throughout our data, we hypothesize that acoustic indices 

may be useful if more attention to habitat, anthrophony, and geophony and their effects 

on the soundscape are considered. This would include having measures of anthrophony 

and geophony included in models, like we did in this study, while also including habitat 

classifications that would differ in baseline geophony such as woodlands, grasslands, and 

shrublands. Distance to habitat edge may also be worth considering because tangential 

habitat biodiversity may blend into the soundscape making patterns or relationships more 

difficult to determine. Many acoustic indices were designed to calculate sound intensity 
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that transfers to abundance but have still found occasional relationships with richness. 

Keeping in mind the nature of each specific acoustic index, we suggest using multiple 

measures of avian diversity such as richness and abundance collected with a limited 

survey radius when establishing acoustic index monitoring. If acoustic indices are going 

to be a tool of the future of conservation, we need to remember the context that each 

index was made in and how acoustic indices work in tandem with the surrounding 

environment. 
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V. TABLES 
 

Table 1. Summary statistics for variables included in models (n=93). Standard error of 
the mean (SE.mean), confidence level of the mean (CL.mean), variance (var), standard 
deviation (std.dev), acoustic complexity index (ACI), acoustic diversity index (ADI), 
acoustic evenness index (AEI), bioacoustics index (BIO), acoustic entropy index (H), 
normalized difference sound index (NDSI), northerly wind (0 or 1, NORTH), wind speed 
(kph, WIND), temperature (C°, TEMP), Julian date (JD), distance to interstate (m, 
DIST_INTERSTATE), and distance to transect (m, DIST_TRANSECT). 

Variable   Min   Max   Median   Mean   SE.mean   CL.mean   var   std.dev   
ABUNDANCE_IN   7   55   20   21.6   0.9   1.9   81.0   9.0   
TOTAL_ABUNDANCE   46   155   78   80.3   2.30   4.6   491.7   22.2   
RICHNESS_IN   4   15   6   7.2   0.3   0.6   8.1   2.8   
RICHNESS_TOTAL   7   22   14   14.5   0.4   0.9   18.0   4.2   
SIMP_DIV_IN   0.59   0.92   0.79   0.79   0.01   0.01   0.01   0.07   
SIMP_DIV_TOTAL   0.61   0.94   0.86   0.84   0.01   0.02   0.01   0.08   
GRASS_ABUN_IN   0   49   18   18.5   1.0   2.0   91.1   9.5   
GRASS_ABUN_TOTAL   9   143   67   67.8   3.3   6.5   1007.7   31.7   
ACI   8,986   13,077   9,706   9,805   62.43   124.1   362,479   602.1   
ADI   0.262   2.251   1.708   1.581   0.051   0.102   0.246   0.496   
AEI   0.162   0.877   0.517   0.539   0.018   0.035   0.029   0.171   
BIO   3.08   13.41   7.21   7.30   0.18   0.35   2.90   1.70   
H   0.279   0.932   0.672   0.703   0.016   0.031   0.022   0.150   
NDSI   -0.539   0.983   0.803   0.730   0.027   0.054   0.070   0.264   
WIND   0   19.3   6.4   6.0   0.40   0.79   14.6   3.82   
NORTH   0   1   0   0.46   0.052   0.10   0.25   0.50   
TEMP     8.9   27.2   20.6   19.7   0.43   0.85   17.0   4.12   
JD   145   201   175   173.8   1.8   3.5   285.0   16.9   
DIST_TRANSECT    0   400   216   168.9   14.8   29.4   20,424.8   142.9   
DIST_INTERSTATE    774   3,150   2,200   2,222.6   58.6   116.4   319,169.6   565.0   
 

  



 

   
 

 33 

Table 2. Pearson’s Product-Moment Correlations between outcome variables such as 
avian abundance within 50 m (ABUNDANCE_IN), total avian abundance 
(TOTAL_ABUNDANCE), avian richness within 50 m (RICHNESS_IN), total avian 
richness (RICHNESS_TOTAL), avian Simpson diversity index within 50 m 
(SIMP_DIV_IN), total avian Simpson diversity (SIMP_DIV_TOTAL), avian grassland 
species abundance within 50 m (GRASS_ABUN_IN), and total avian grassland species 
abundance (GRASS_ABUN_TOTAL) and acoustic indices such as acoustic complexity 
index (ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), bioacoustics 
index (BIO), acoustic entropy index (H), and normalized difference sound index (NDSI). 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

   ACI  ADI  AEI  BIO  H  NDSI  

ABUNDANCE_IN  0.104  0.283**  -0.232*  0.044  0.220*  -0.011  

TOTAL_ABUNDANCE  0.149  0.325**  -0.282**  -0.135  0.250*  0.015 

RICHNESS_IN  -0.194.  0.146  -0.118  0.028  -0.023  0.004 

RICHNESS_TOTAL  -0.256*  0.027  -0.030  -0.203.  -0.101  -0.123  

SIMP_DIV_IN  -0.118  0.146  -0.155  0.033  0.027  -0.106  

SIMP_DIV_TOTAL  -0.172.  0.029  -0.069  -0.048  -0.046  -0.130  

GRASS_ABUN_IN  0.245*  0.251*  -0.231*  0.265*  0.156  0.117  

GRASS_ABUN_TOTAL  0.206*  0.174.  -0.163  0.195.  0.151  0.136  
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Table 3. Pearson correlations between acoustic indices such as acoustic complexity index 
(ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), bioacoustics index 
(BIO), acoustic entropy index (H), and normalized difference sound index (NDSI). 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

   ACI  ADI  AEI  BIO  H  

ADI  0.360***          

AEI  -0.396***  -0.942***        

BIO  0.057  0.163  -0.035      

H  0.243**  0.677***  -0.690***  -0.065    

NDSI  0.056  0.335**  -0.304**  0.362***  0.194.  
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Table 4. Pearson correlations between avian community outcome variables such as avian 
abundance within 50 m (ABUNDANCE_IN), total avian abundance 
(TOTAL_ABUNDANCE), avian richness within 50 m (RICHNESS_IN), total avian 
richness (RICHNESS_TOTAL), avian Simpson diversity index within 50 m 
(SIMP_DIV_IN), total avian Simpson diversity (SIMP_DIV_TOTAL), avian grassland 
species abundance within 50 m (GRASS_ABUN_IN), and total avian grassland species 
abundance (GRASS_ABUN_TOTAL) and environmental and temporal predictor 
variables such as Julian date (JD), northerly wind (0 or 1, NORTH), wind speed (kph, 
WIND), temperature (C°, TEMP), distance to interstate (m, DIST_INTERSTATE), and 
distance to transect (m, DIST_TRANSECT). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 
‘*’ 0.05 ‘.’ 0.1 

   JD  NORTH  WIND TEMP  DIST  

INTERSTATE 

DIST  

TRANSECT 

ABUNDANCE  

IN  

-0.062  -0.015 -0.274**  0.044  0.143  -0.043  

  

TOTAL  

ABUNDANCE  

-0.002  -0.035  -0.140  0.076  -0.090  0.182.  

RICHNESS  

IN  

0.138  -0.133  -0.169  0.080  0.575***  -0.176.  

  

RICHNESS  

TOTAL  

0.212*  -0.229*  -0.017  0.205*  0.266**  -0.057  

  

SIMP_DIV  

IN  

0.078  -0.045  -0.187.  0.089  0.552***  -0.051  

  

SIMP_DIV  

TOTAL  

0.168  -0.199.  -0.092  0.214*  0.398***  0.010  

  

GRASS_ABUN  

IN  

-0.238*  0.047  -0.159  -0.046  -0.278**  0.049  

  

GRASS_ABUN  

TOTAL  

-0.177.  0.138  -0.083  -0.141  -0.301**  0.116 
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Table 5. Pearson correlations between environmental and temporal predictor variables 
such as Julian date (JD), northerly wind (0 or 1, NORTH), wind speed (kph, WIND), 
temperature (C°, TEMP), distance to interstate (m, DIST_INTERSTATE), and distance 
to transect (m, DIST_TRANSECT) and acoustic indices such as acoustic complexity 
index (ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), bioacoustics 
index (BIO), acoustic entropy index (H), and normalized difference sound index (NDSI). 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

   ACI  ADI  AEI  BIO  H  NDSI  

JD  -0.354***  -0.132  0.0926  -0.216*  -0.201.  0.0261  

NORTH  -0.0309  0.126  -0.108  0.0541  0.210*  -0.200.  

WIND  0.112  -0.306**  0.319**  -0.115  -0.116  -0.152  

TEMP -0.0612  -0.0931  -0.0176  -0.222*  -0.0239  0.218*  

DIST_INTERSTATE  -0.410***  -0.114  0.133  0.0643  -0.195.  0.139  

DIST_TRANSECT -0.0439  0.0991  -0.0521  0.126  0.289**  0.146  
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Table 6. Each outcome variable and the average McFadden’s Psuedo-R2 for the 
confidence set of each outcome variable. Good fit to the data is expressed as Psuedo-R2 
between 0.2-0.4. *best between in and total model sets. 

Avian community metric  McFadden’s Psuedo-R2  

Richness in*  0.0924  

Richness total  0.0830  

Abundance in*  0.0583  

Abundance total  0.0486  

Simpson diversity in  -0.253  

Simpson diversity total*  -0.181  

Grassland species abundance in*  0.0815  

Grassland species abundance total  0.0555  
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Table 7. Models included in the confidence set for avian richness. All models controlled for distance to transect, observer bias, 
and Song meter model. Cumulative weight (Cum. Wt), Log-Likelihood (LL), acoustic diversity index (ADI), distance to 
interstate (m, DIST_INTERSTATE), and acoustic evenness index (AEI). 

Model  Variables  AICc  Delta 

AICc  

Weight  Cum. Wt  LL  Psuedo-R2  

Richness in 1  ADI + DIST_INTERSTATE   415.25  0  0.41  0.41  -201.14  0.0953  

Richness in 2  AEI + DIST_INTERSTATE   415.69  0.44  0.33  0.74  -201.36  0.0943  

Richness in 3  DIST_INTERSTATE   416.33  1.08  0.24  0.98  -202.82  0.0877  
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Table 8. Full model average variables included in confidence set for avian richness within 
50 m. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. Standard error (SE), 
acoustic diversity index (ADI), acoustic evenness index (AEI), distance to interstate (m, 
DIST_INTERSTATE). 

Coefficient  Estimate  SE  z  p  

(Intercept)  9.963e-01  2.909E-01  3.398  0.0007***  

ADI  6.462e-02  9.376e-02  0.686  0.493  

AEI  -1.350e-01  2.335e-01  0.575  0.565  

DIST_INTERSTATE  3.953e-04  7.104e-05  5.488  <0.0001***  
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Table 9. Models included in the confidence set for avian abundance. All models controlled for distance to transect, observer 
bias, and Song meter model. Cumulative weight (Cum. Wt), Log-Likelihood (LL), acoustic evenness index (AEI), distance to 
interstate (m, DIST_INTERSTATE), acoustic complexity index (ACI), normalized difference sound index (NDSI), wind speed 
(kph, WIND), acoustic entropy index (H), time of survey (TIME), bioacoustics index (BIO), acoustic diversity index (ADI), 
Julian date (JD), and northerly wind (0 or 1, NORTH). 

Model  Variables  AICc  Delta 

AICc  

Weight  Cum. 

Wt  

LL  Psuedo-

R2  

Abundance 

in 1  

AEI*DIST_INTERSTATE + 

ACI*DIST_INTERSTATE  + NDSI*WIND   

639.24  0  0.58  0.58  -304.32  0.0631  

Abundance 

in 2  

H + TIME + NDSI*DIST_INTERSTATE + 

BIO*WIND  + ACI*WIND + NDSI*WIND  

641.16  1.91  0.22  0.81  -301.00  0.0733  

Abundance 

in 3  

H  642.75  3.51  0.10  0.91  -314.89  0.0305  

Abundance 

in 4  

ADI + TIME + NDSI*DIST_INTERSTATE + 

BIO*WIND + ACI*WIND + NDSI*WIND  

645.15  5.91  0.03  0.94  -303.00  0.0671  

Abundance 

in 5  

BIO + H + ACI + NDSI + WIND + TIME + JD + 

NORTH + DIST_INTERSTATE  

645.93  6.69  0.02  0.96  -306.27  0.0570  
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Table 10. Full model average variables included in confidence set for avian abundance 
within 50 m. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. Standard error 
(SE), acoustic evenness index (AEI), acoustic complexity index (ACI), normalized 
difference sound index (NDSI), acoustic entropy index (H), bioacoustics index (BIO), 
acoustic diversity index (ADI), distance to interstate (m, DIST_INTERSTATE), wind 
speed (kph, WIND), time of survey (TIME), Julian date (JD), and northerly wind (0 or 1, 
NORTH). 

Coefficient  Estimate  SE  z  p  

(Intercept)  -1.665e+04  3.070e+04  0.540  0.589  

AEI  1.942e+00  1.742e+00  1.111  0.267  

ACI  4.699e-04  5.034e-04  0.931  0.352  

NDSI  -7.920e-01  6.187e-01  1.273  0.203  

H  3.325e-01  4.791e-01  0.693  0.489  

BIO  2.237e-02  4.235e-02  0.526  0.599  

ADI  6.230e-03  3.785e-02  0.164  0.870  

AEI:DIST_INTERSTATE  -1.014e-03  8.838e-04  1.145  0.252  

ACI:DIST_INTERSTATE  -2.102e-07  1.959e-07  1.069  0.285  

NDSI:DIST_INTERSTATE  9.944e-05  1.901e-04   0.521  0.602  

NDSI:WIND  1.065e-01  6.804e-02  1.552  0.121  

BIO:WIND  -5.345e-03  1.006e-02  0.529  0.597  

ACI:WIND  1.623e-05  3.011e-05   0.537  0.591  

DIST_INTERSTATE  2.630e-03  2.412e-03  1.087  0.277  

WIND  -2.346e-01  2.656e-01  0.880  0.379  

TIME  -7.538e-06  1.390e-05  0.540  0.589  

JD  -2.553e-05  3.806e-04  0.066  0.947  

NORTH  -1.300e-03  1.468e-02  0.088  0.930  



 

   
 

 

42 

Table 11. Models included in the confidence set for avian Simpson diversity. All models controlled for distance to transect, 
observer bias, and Song meter model. Cumulative weight (Cum. Wt), Log-Likelihood (LL), Julian date (JD), acoustic diversity 
index (ADI), distance to interstate (m, DIST_INTERSTATE), normalized difference sound index (NDSI), acoustic evenness 
index (AEI), time of survey (TIME), and northerly wind (0 or 1, NORTH). 

Model  Variables  AICc  Delta AICc  Weight  Cum. 

Wt  

LL  Psuedo-

R2  

SDI total 1  JD + ADI*DIST_INTERSTATE + 

NDSI*DIST_INTERSTATE   

-225.66  0  0.54  0.54  125.46  -0.176  

SDI total 2  AEI + TIME + JD + NORTH + 

NDSI*DIST_INTERSTATE   

-225.23  0.43  0.43  0.97  126.56  -0.187  
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Table 12. Full model average variables included in confidence set for total avian Simpson 
diversity. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. Standard error 
(SE), acoustic diversity index (ADI), normalized difference sound index (NDSI), acoustic 
evenness index (AEI), distance to interstate (m, DIST_INTERSTATE), Julian date (JD), 
time of survey (TIME), and northerly wind (0 or 1, NORTH). 

Coefficient  Estimate  SE  z  p  

(Intercept)  -6.729e+03  9.478e+03   0.706  0.480  

ADI  -1.475e-01  1.523e-01  0.965  0.334  

NDSI  4.341e-01  1.201e-01  3.571  0.000356***  

AEI  7.786e-02  9.592e-02  0.809  0.418  

ADI:DIST_INTERSTATE  5.592e-05  5.990e-05  0.929  0.353  

NDSI:DIST_INTERSTATE  -1.440e-04  5.516e-05   2.584  0.00976**  

DIST_INTERSTATE  -8.358e-05  8.463e-05  0.982  0.326  

JD  -1.256e-03  5.901e-04   2.098  0.0359*  

TIME  -3.047e-06  4.290e-06  0.706  0.480  

NORTH  1.784e-02   2.435e-02  0.729  0.466  



 

   
 

 

44 

 

Table 13. Models included in the confidence set for avian grassland species abundance. All models controlled for distance to 
transect, observer bias, and Song meter model. Cumulative weight (Cum. Wt), Log-Likelihood (LL), wind speed (kph, 
WIND), Julian date (JD), acoustic complexity index (ACI), distance to interstate (m, DIST_INTERSTATE), and normalized 
difference sound index (NDSI). 

Model  Variables  AICc  Delta 

AICc  

Weight  Cum. 

Wt  

LL  Psuedo-

R2  

Grassland species 

abundance 1  

WIND + JD + ACI*DIST_INTERSTATE + 

NDSI*DIST_INTERSTATE  

6754.80  0  0.98  0.98  -313.45  0.0815  
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Table 14. Full model average variables included in confidence set for avian grassland 
species abundance within 50 m. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1. Standard error (SE), acoustic complexity index (ACI), normalized difference sound 
index (NDSI), distance to interstate (m, DIST_INTERSTATE), wind speed (kph, 
WIND), and Julian date (JD). 

Coefficient  Estimate  SE  z  p  

(Intercept)  2.525e+02  6.619e+01  3.758  0.000171***  

ACI  -2.121e-02  6.724e-03  3.108  0.00189**  

NDSI  3.407e+01  9.593e+00  3.499  0.000467***  

ACI:DIST_INTERSTATE  9.965e-06   3.060e-06  3.209  0.00133**  

NDSI:DIST_INTERSTATE  -1.264e-02  3.986e-03   3.124  0.00178**  

DIST_INTERSTATE  -9.401e-02  2.935e-02  3.155  0.00160**  

WIND  -6.950e-01  3.494e-01  1.959  0.0501.  

JD  -1.654e-01  5.230e-02  3.116  0.00183**  
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VI. FIGURES 
 

 

Figure 1. Acoustic recorder locations (pink) and monitoring plots (yellow) on Shoemaker 
Island and Mormon Island of the Platte River near Grand Island, NE (A). Acoustic 
recorder location west of Crane Trust property near the north channel of the Platte River 
in Kearney, NE, at the Kearney Outdoor Learning Area (B). 
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Figure 2. Model averaged acoustic indices relationship to richness for ADI (A) and AEI 
(B) included in model confidence set for avian richness with a limited survey radius. 
Grey area indicates 95% confidence intervals 
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Figure 3. Model averaged acoustic indices relationship to abundance for ACI (A), ADI 
(B), H (C), AEI (D), BIO (E), and NDSI (F) included in model confidence set for avian 
abundance with a limited survey radius. Grey area indicates 95% confidence intervals. 
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Figure 4. Model averaged acoustic indices relationship to abundance for ACI (A), AEI 
(B), and NDSI (C) when considering maximum (green), mean (red), and minimum (blue) 
distances (m) away from the interstate which was the closest major source of 
anthrophony to the study area. Acoustic indices shown were in model confidence set for 
avian abundance with a limited survey radius. 
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Figure 5. Model averaged acoustic indices relationship to abundance for ACI (A), BIO 
(B), and NDSI (C) when considering maximum (green), mean (red), and minimum (blue) 
wind speeds during surveys. Acoustic indices shown were in model confidence set for 
avian abundance with a limited survey radius. 
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Figure 6. Model averaged acoustic indices relationship to Simpson diversity for ACI (A), 
AEI (B), and NDSI (C) included in model confidence set for avian Simpson diversity 
with an unlimited survey radius. Grey area indicates 95% confidence intervals. 
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Figure 7. Model averaged acoustic indices relationship to Simpson diversity for ADI (A) 
and NDSI (B) when considering maximum (green), mean (red), and minimum (blue) 
distances (m) away from the interstate which was the closest major source of 
anthrophony to the study area. Acoustic indices shown were in model confidence set for 
avian Simpson diversity with an unlimited survey radius.
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Figure 8. Model averaged acoustic indices relationship to grassland species abundance 
for ACI (A) and NDSI (B) included in model confidence set for avian grassland species 
abundance with a limited survey radius. Grey area indicates 95% confidence intervals. 
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Figure 9. Model averaged acoustic indices relationships to grassland species abundance 
for ACI (A) and NDSI (B) when considering maximum (green), mean (red), and 
minimum (blue) distances (m) from the interstate, which was the closest major source of 
anthrophony to the study area. Acoustic indices shown were in model confidence set for 
avian grassland species abundance with a limited survey radius. 
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VII. APPENDIX 
 

Appendix A. List of species recorded on avian point count surveys within a 50 m radius 
(Count In), outside a 50 m radius (Count Out), and the total counts of each during the 
breeding seasons of 2019, 2020, and 2021 in the Central Platte River Valley, NE, at each 
monitoring plot paired with an audio recorder.  

Common Name Scientific Name Count In Count Out Total Count 
American Crow  Corvus brachyrhynchos  0 1 1 
American Goldfinch  Spinus tristis 91 106 197 
American Kestrel  Falco sparverius 0 1 1 
American Robin  Turdus migratorius  36 146 182 
Baird's Sandpiper Calidris bairdii  0 15 15 
Bald Eagle Haliaeetus leucocephalus  1 28 29 
Baltimore Oriole  Icterus galbula  3 48 51 
Bank Swallow Riparia riparia 2 5 7 
Barn Swallow Hirundo rustica 42 52 94 
Bell's Vireo Vireo bellii 13 17 30 
Belted Kingfisher  Megaceryle alcyon  0 4 4 
Blue Jay Cyanocitta cristata 3 35 38 
Blue-winged Teal Anas discors 1 0 1 
Bobolink Dolichonyx oryzivorus 242 484 726 
Brown Thrasher Toxostoma rufum 12 21 33 
Brown-headed 

Cowbird  
Molothrus ater 438 847 1285 

Canada Goose Branta canadensis 0 141 141 
Cattle Egret Bubulcus ibis 11 0 11 
Cliff Swallow  Petrochelidon pyrrhonota 125 270 395 
Common Grackle  Quiscalus quiscula  6 25 31 
Common Yellowthroat Geothlypis trichas 65 241 306 
Dickcissel Spiza americana  281 712 993 
Downy Woodpecker  Picoides pubescens 1 2 3 
Eastern Kingbird Tyrannus tyrannus  24 52 76 
Eastern Meadowlark Sturnella magna 14 46 60 
Eastern Wood-Pewee Contopus virens 0 3 3 
Eurasian Collared-

Dove  
Streptopelia decaocto  2 2 4 

European Starling  Sturnus vulgaris  37 61 98 
Field Sparrow  Spizella pusilla  0 15 15 
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Grasshopper Sparrow  Ammodramus 
savannarum  

66 79 145 

Gray Catbird  Dumetella carolinensis 14 8 22 
Great Blue Heron Ardea herodias  0 6 6 
Great Crested 

Flycatcher 
Myiarchus crinitus  0 2 2 

Great Egret Ardea alba 1 0 1 
Greater Prairie-

Chicken 
Tympanuchus cupido  0 11 11 

House Finch Haemorhous mexicanus  2 0 2 
House Sparrow  Passer domesticus 3 1 4 
House Wren  Troglodytes aedon  22 81 103 
Killdeer Charadrius vociferus 30 201 231 
Mallard Anas platyrhynchos 3 36 39 
Marsh Wren Cistothorus palustris 0 1 1 
Mourning Dove Zenaida macroura 35 142 177 
Northern Bobwhite Colinus virginianus 5 153 158 
Northern Cardinal Cardinalis cardinalis 5 17 22 
Northern Flicker Colaptes auratus 1 17 18 
Orchard Oriole  Icterus spurius 29 64 93 
Red-bellied 

Woodpecker  
Melanerpes carolinus 0 6 6 

Red-eyed Vireo Vireo olivaceus 0 1 1 
Red-headed 

Woodpecker 
Melanerpes 

erythrocephalus  
1 30 31 

Red-tailed Hawk  Buteo jamaicensis 0 5 5 
Red-winged Blackbird Agelaius phoeniceus 569 2023 2592 
Ring-necked Pheasant Phasianus colchicus  4 151 155 
Rock Pigeon Columba livia  0 33 33 
Rose-breasted 

Grosbeak  
Pheucticus ludovicianus  0 1 1 

Sedge Wren Cistothorus platensis 7 27 34 
Song Sparrow  Melospiza melodia 43 166 209 
Sora Porzana carolina 0 1 1 
Spotted Sandpiper  Actitis macularius 5 19 24 
Spotted Towhee Pipilo maculatus  0 6 6 
Swamp Sparrow Melospiza georgiana  3 41 44 
Tree Swallow  Tachycineta bicolor  30 30 60 
Turkey Vulture Cathartes aura 1 2 3 
Upland Sandpiper Bartramia longicauda  1 19 20 
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Warbling Vireo Vireo gilvus 3 24 27 
Western Meadowlark Sturnella neglecta 124 436 560 
White-breasted 

Nuthatch 
Sitta carolinensis 0 1 1 

White-rumped 
Sandpiper  

Calidris fuscicollis  0 2 2 

Wild Turkey Meleagris gallopavo  0 1 1 
Willow Flycatcher  Empidonax traillii  28 60 88 
Wilson's Phalarope  Phalaropus tricolor  17 16 33 
Wilson's Snipe  Gallinago delicata  3 13 16 
Yellow Warbler  Setophaga petechia  70 167 237 
Yellow-shafted Flicker Colaptes a. auratus 0 2 2 
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